
For Peer Review

Can Method Data Dependencies Support the Assessment of

Traceability between Requirements and Source Code?

Journal: Journal of Software: Evolution and Process

Manuscript ID: Draft

Wiley - Manuscript type: Research Article

Date Submitted by the Author: n/a

Complete List of Authors: Kuang, Hongyu; State Key Laboratory for Novel Software Technology,
Nanjing University
Mäder, Patrick; Fakultät für Informatik und Automatisierung, Technische
Universität Ilmenau
Hu, Hao; State Key Laboratory for Novel Software Technology, Nanjing
University

Huang, LiGuo; Dept. of Computer Science and Engineering, Southern
Methodist University,
Lv, Jian; State Key Laboratory for Novel Software Technology, Nanjing
University
Egyed, Alexander; Institute for Software Systems Engineering, Johannes
Kepler University Linz,

Keywords:
requirements traceability, feature location, source code dependencies,
program analysis, method call dependencies, method data dependencies

http://mc.manuscriptcentral.com/jsme

Journal of Software: Evolution and Process

For Peer Review

Can Method Data Dependencies Support

the Assessment of Traceability between

Requirements and Source Code?

Abstract

Requirements traceability benefits many software engineering activities, such as change impact

analysis and risk assessment. However, capturing and maintaining the required complete and correct

traceability links is not trivial, making traceability assessment an important field of study. In recent

years, requirements traceability research has focused on call dependencies within source code to

understand how code properties contribute to the implementation of a requirement and to assess

whether traceability links are correct and complete. These approaches largely ignore the role of existing

data dependencies within the source code. Methods may never call each other, but may still depend

upon another by sharing data. We identified five research questions and validated them on five software

systems, covering 4 to 72 KLOC. We found that data dependencies are as relevant as call dependencies

for assessing requirements traceability. Even more interesting, our analyses show that data

dependencies complement call dependencies in the assessment. These findings have strong

implications on code understanding, including trace capture, maintenance, and validation techniques.

Keywords- requirements traceability; software traceability; feature location; source code

dependencies; program analysis; method call dependencies; method data dependencies;

I. Introduction

Requirements-to-code traceability refers to the practice of capturing links between requirements

and source code – usually suggesting whether some code implements a given requirement. These links

can support stakeholders in development-related tasks. In a recent study [1] we discovered that

requirements-to-code traceability strongly benefits developers in performing software maintenance

tasks. We found that subjects with traceability performed on average 24% faster on a maintenance task

and created on average 50% more correct solutions as compared to maintenance task where traceability

was not available. These findings were based on correct and complete traceability. Unfortunately,

literature suggests that high quality traceability links are difficult to obtain [12, 25, 26], especially so

for requirements–to-code traces due to the typically large numbers of required traces, frequent changes

to the traced code, and informal nature of the relationships.

In recent years, requirements traceability research has started to focus increasingly on control

dependencies within source code in order to gain more information on how code properties contribute

to the implementation of a requirement and to assess whether existing traceability relations are correct

[2, 12]. Among others, researchers use fan-in/fan-out analyses [3], identified typical patterns of

requirements implementation [4], and complement keyword matching techniques on the code with

Page 1 of 31

http://mc.manuscriptcentral.com/jsme

Journal of Software: Evolution and Process

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

control flow analyses [5,6]. These works either statically or dynamically analyze the source code to

retrieve sequences of method calls, which are then used to deduct dependencies between methods and

to imply relationships to requirements. These analyses, essentially, investigate the callers and callees of

a method in order to assess traceability between a method and a requirement. For example, it was

observed that if a method implements a given requirement then a method it calls is more likely to

implement that requirement compared to a random other method [13]. However, method calls are not

the only form of dependency among source code. Source code is also dependent upon another through

shared data. This paper specifically investigates whether method data dependencies are as relevant as

method call dependencies for understanding requirements-to-code traces. This paper further

investigates whether call and data dependencies are complementary in alleviating each other’s

weaknesses.

We thus formulated five research questions and validated them on five, small to large software

systems, covering in total 171 KLOC, 5236 methods, and 91 requirements (four out of the five being

open source systems). In this study, we considered all methods that were connected by either call or

data dependencies and for which we had available trustworthy requirements-to-code traces. For any

given method we then used the traces of its related methods to derive traces for the given method and

compared it with the original traces of that method, which were created manually. That means that the

classification of whether a method implements a requirement solely determined from the method’s call

and data dependencies to neighboring methods and the given traces of those neighbor methods.

Our findings are that data relationships, like call dependencies, have a strong relationship to

requirements traceability. But, most interestingly, our analyses show that data dependencies

complement call dependencies. Measured in precision and recall (i.e., wrong trace rate vs. missing

trace rate), we find that call and data dependencies combined resulted in significant improvements in

both. The average increase of both precision and recall is 19.80% compared to considering call

dependencies only. This observation is of particular importance because many technologies utilized by

the traceability research community tend to trade off precision or recall but rarely is there a technology

that improves both. Our findings thus have strong implications on all forms of code understanding,

including trace capture, maintenance, and validation techniques (e.g., information retrieval).

Furthermore, we demonstrated that our findings are robust against trace incompleteness and

incorrectness. This particular observation implied that our findings can benefit the real-world

traceability scenarios since in the real-world situation traceability techniques often have to deal with

imperfect traceability which could be both erroneous and incomplete.

This paper extends our work presented at the 2012 International Conference on Software

Maintenance (ICSM 2012) [16] in five major aspects (1) it proposes an integrated tool for capturing

both method call and data dependencies. (2) it proposes and evaluates an advanced classifier for

analyzing the captured code dependency graph using additional information from data dependencies

for analysis (i.e., the number of types and the access type shared in a data dependency), (3) it studies

the effect of different trace granularities, (4) it includes results from additional evaluated systems, and

(5) it studies the application of the approach in realistic scenarios with imperfect traceability.

The remainder of this paper is structured as follows. Section II briefly introduces the research

background. Section III states our five research questions and Section IV discusses the proposed

technologies for capturing and analyzing code dependencies. Section V introduces how we set up the

experiments based on the five software systems for answering those questions. Section VI reports the

results of our experiments and answers the research questions 1-5. Section VII refers to limitations of

Page 2 of 31

http://mc.manuscriptcentral.com/jsme

Journal of Software: Evolution and Process

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

our work. Section VIII discusses several interesting issues related to this paper. Section IX discusses

related work in the area of requirements traceability, feature location, and program analysis. Finally,

Section X concludes this paper.

II. Background: Traceability and Code Dependencies

In this section, we introduce the concepts of requirements-to-code traceability, code dependencies,

and traceability assessment. For illustrating our concepts throughout the paper, we are using the Video

on Demand system (VoD) [9]. VoD allows selecting and streaming of movies from a server including

basic operations such as stopping or pausing the movie. The VoD system is 3.6 KLOC in size and the

smallest of the five systems we analyzed. However, being an intuitive system, we use excerpts of VoD

as an illustration for all relevant concepts we are introducing.

A. Background on Traceability

Software traceability is achieved through the creation and use of trace links, defined by the Center

of Excellence for Software and Systems Traceability [30] as “specified associations between pair of

artifacts, one comprising the source artifact and one comprising the target artifact”. When correct,

traceability demonstrates that a rigorous software development process has been established and

systematically followed. Guidelines for the development in safety-critical industries prescribe

traceability for two reasons. First, as an indirect measure that good practice has been followed, the

general idea being that traceability information serves as an indicator that design and production

practices were conducted in a sound fashion. Second, as a more direct measure, to show that

requirements are explored and identified and that the system is demonstrably designed and

implemented.

B. Requirements-to-Code Traceability

A traceability link (or trace for short) captures where in the source code a requirement is

implemented. This is similar to the concepts of feature mapping, concern mapping, and concept

mapping [10, 6, 8]. A requirements-to-code traceability link typically captures the relationship of

individual requirements and code elements – such as classes, methods, or any other level of granularity.

But, of course, a requirement can be implemented by multiple code elements. Thus, multiple traces

may exist for the same requirement where each trace relates to a different code element. Furthermore, a

code element can be implemented by multiple requirements. Accordingly, multiple traces may exist

from different requirements to the same code element. To support this multiplicity, trace links are

commonly captured in form of a requirements traceability matrix (RTM), which captures in each cell a

traceability link. RTMs contain n*m cells where n is the number of requirements and m is the number

of code elements.

 R0 R2 R5

VODClient.init() X

ListFrame.buttonControl3_actionPerformed() X X

ListFrame() X X

ServerReq.getmovie() X X X

ListFrameListener3.actionPerformed() X X

Page 3 of 31

http://mc.manuscriptcentral.com/jsme

Journal of Software: Evolution and Process

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

Table 1. Excerpt from a requirements traceability matrix (RTM) of the Video on Demand example

Table 1 depicts an excerpt of such a RTM for the VoD system. The RTM in the table depicts

selected combinations of methods (rows) and requirements (columns). An ‘X’ in a cell indicates a trace

between the cell’s requirement and the cell’s method. A blank in the cell indicates a no-trace. For

example, R2 is the requirement “Users should be able to display textual information about a selected

movie.” In Table 1, method VODClient.init() does not trace to requirement R2; however the

ListFrame’s constructor does. We define these two kinds of traces as “no-trace” and “trace”. While

the method ListFrameListener3.actionPerformed() has a “no-trace” to R0, it does trace to

requirements R2 and R5.

C. Call and Data Dependencies between Methods

In this paper we consider two kinds of method dependencies: (1) calling each other and (2) sharing

data with each other. Calling means that the source code of one method contains a call to the other

method. Figure 1 shows an excerpt of the VoD source code, covering three Java methods: VODClient’s

init(), the constructor of ListFrame, and one of ListFrame’s event handler

buttonControl3_actionPerformed(). In method init(), the object server of type ServerReq is

initialized. Then this object is passed to the constructor of the ListFrame class and there assigned to

the ListFrame field ser. Finally, the event handler buttonControl3_actionPerformed()

accesses the same field ser. The fact that VODClient’s init() instantiates a ListFrame’s object is

essentially a method call onto ListFrame’s constructor. However, neither VODClient.init() nor

ListFrame’s constructor call the method buttonControl3_actionPerformed(). Hence there are

no call dependencies between buttonControl3_actionPerformed() and the other methods.

Figure 1 Code snippets of the Video on Demand system

Sharing data means that two or more methods manipulate or read variables that point to the same

data in (physical) memory irrespective as to whether the variables which hold the pointers are the same

(i.e., two classes may have differently named variables that point at the same object). This complex

class VODClient

 public final void init()

 …

 server = new ServerReq("127.0.0.1", s);

 server.connect();

 listframe = new ListFrame(server, this);

class ListFrame

 public ListFrame(ServerReq serverReq,

VODClient vODClient)

 …

 ser = serverReq;

 parent = vODClient;

 …

 void buttonControl3_actionPerformed(…)

 …

 String s = listControl1.getSelectedItem();

 if (s != null){

 Movie movie = ser.getmovie(s);

 …

Page 4 of 31

http://mc.manuscriptcentral.com/jsme

Journal of Software: Evolution and Process

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

formulation is necessary as the same underlying data is often accessed through references or even

chains of references that in a simple static analysis would appear independent. Figure 1 shows an

example that demonstrates such a situation. There is an obvious data dependency between the two

ListFrame methods because both access the ser field even though we do not find method calls

between them. This data dependency is easily recognizable. Not easy to recognize is the data

dependency between VODClient’s init() and ListFrame’s

buttonControl3_actionPerformed(). Neither method accesses the same fields. However, the

local server variable defined in VODClient’s init() method is eventually passed to ListFrame’s

constructor as a parameter where it is stored as ser. The variables server and ser thus point to the

same data in memory. Thus, all three methods access or manipulate the same underlying data object

and this implies that all three methods are data dependent. We demonstrate that such data dependencies

can help assess traceability, because data dependencies much like call dependencies help identify

related functionality.

D. Traceability Assessment

A large number of traceability links is required to trace requirements to their implementing source

code. These links easily get outdated once the specification and the implementation evolve, making it

necessary to constantly assess and update traceability links in order to ensure the required completeness

and correctness. Given the large number of trace links in a project, and the cost and effort of

assessment, it is appealing to consider techniques for performing that task automatically – even if such

techniques can only provide a confidence score for each link on which basis a list of suspect links is

being created that humans need to prune. While we would desire a technique that can interpret and

assess the semantics of a link, there is no approach in sight that would be able to do that. Instead,

researchers go for a more realistic target by analyzing the relation between a traced artifact and other

artifacts of the same type. That analysis allows drawing conclusions about the consistency and

conclusiveness of existing and missing traces. This compounding evidence can increase confidence in

the correctness of a trace link.

Let us discuss how our approach assesses traceability links for a given method based on its related

methods traceability assessment on the VOD system we discussed above (i.e., through call or data

dependencies). According to Table 1, ListFrame.buttonControl3_actionPerformed() has a

“trace” to R2 and a “no-trace” to R5. Let us now assess these two traces. Looking at the

implementation (code) of the VoD system, we find that the method we are trying to assess

(ListFrame.buttonControl3_actionPerformed()) is called by

ListFrameListener3.actionPerformed() and it calls ServerReq.getmovie(). Table 1 shows

that these two neighboring methods (caller and callee) both trace to R2 and R5. Given that both the

caller and callee of the method we are trying to assess also trace to R2, we may be more confident that

the trace to R2 is correct. However, we may need to be more doubtful about that method’s no-trace to

R5 because the caller and callee do trace to R5. This assessment included information about calling

relationships only. From Section II.C we know that buttonControl3_actionPerformed()also has

data dependencies with VODClient.init() and the constructor of ListFrame. Hence, there are

more possible dependencies to consider. From Table 1, we learn that init() does not trace to R2 and

R5 while ListFrame’s constructor traces to R2 but not to R5. So if we consider traces from this more

complete set of neighboring methods (call and data dependencies), we find that three out of four

Page 5 of 31

http://mc.manuscriptcentral.com/jsme

Journal of Software: Evolution and Process

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

methods trace to R2 and merely half of the neighbor methods trace to R5. This observation increases

our confidence that R2 traces to ListFrame.buttonControl3_actionPerformed() but we now

also have more evidence that it may not trace to R5 after all. The example above shows that a

successful assessment technique needs to analyze each cell of a traceability matrix to classify it as trace

or no-trace and briefly illustrates our approach for trace assessment.

III. Research Questions

The goal of our work is evaluating the usefulness of method data dependencies in addition to method

call dependencies for assessing traceability links. We are interested in their usefulness separately and

together in having a potential complementary effect. This led to two research questions:

1) Are method data dependencies relevant for assessing requirements-to-code traces?

2) Are method call and method data dependencies complementary in assessing requirements-to-code

traces?

In practice, requirements-to-code traces occur in various granularities. For example, traces may link

requirements to methods in the source code or they may link requirements to classes, packages, or

components. As the assessment of a trace considers traces on dependent code entities, trace granularity

could potentially influence the relevance of method data dependencies. This consideration led to the

third research question:

3) Is the complementary effect of method call and data dependencies for assessing

requirements-to-code traces affected by trace granularities?

If method data dependencies are indeed relevant for assessing requirements-to-code traces and there

is a complementary effect, how can we demonstrate that our findings can benefit the real-world

traceability scenarios? Trace assessment is practically relevant for two traceability related tasks: trace

generation and trace validation (see Section II.D). Trace generation approaches (e.g., [6] and [11]) often

use information retrieval techniques first to generate initial traces between requirements and code

elements (such as methods). Then a threshold based on the calculated IR value is set to choose highly

relevant traces as the seeds for the subsequent process. The whole set of these seed traces could be

viewed as an imperfect RTM which is less erroneous but highly incomplete. On the other hand, trace

validation approaches (e.g., [12]) assess RTMs, which can be both erroneous and incomplete in the

context of code dependencies to perform trace maintenance tasks. So if we discover a complementary

effect between call and data dependencies, it should be robust against the incorrectness and

incompleteness of input RTMs if the real-world traceability scenarios can get benefit from it. Therefore

we define the following additional research questions:

4) Is the complementary effect of method call and data dependencies affected by trace incorrectness?

5) Is the complementary effect of method call and data dependencies affected by trace

incompleteness?

In investigating research questions 1–5, we will also reevaluate the effect of method call

Page 6 of 31

http://mc.manuscriptcentral.com/jsme

Journal of Software: Evolution and Process

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

dependencies for assessing requirements-to-code traces for two reasons: a) to demonstrate that our case

studies and empirical observations are consistent with previous studies and b) to quantify the

differences between call and data dependencies, which need to be compared directly. We will

investigate our research questions on five case study systems, which are presented in Section V. The

empirical evidence we gathered is then used to answer the research questions 1-5 in Section VI. Before

discussing the study and its results, we will introduce the research framework that we developed for

conducting the study, i.e., the technologies that we used for obtaining call and data dependencies and

for understanding their relationship to requirements traceability links. This is done in Section IV.

IV. Developed Research Framework

Figure 2 depicts the framework of our proposed technologies. We analyzed each software system

separately. First of all, we explain the reason why we chose dynamic analysis to capture code

dependencies instead of static analysis and show the overall structure of our capture tool (Step 0). We

initiated our study by capturing method call and method data dependencies during runtime to lay the

foundation for investigating the relationship between code dependencies and requirements-to-code

traceability (Step 1 and 2). We then built a graph structure called Code Dependency Graph (CDGraph),

which combines the captured method call and data dependencies so that we can establish our basic

model for correlating call and data dependencies with requirements traces added to the CDGraph. In

the basic trace model, each trace is computed based on trace information of neighboring methods. We

then introduce a more advanced algorithm called Inverse Data Frequency (idf) and apply this algorithm

to the basic trace model to generate the experiment results. This algorithm was needed to better handle

data dependencies because they strongly outnumbered call dependencies and contained significant

noise (Step 3). Finally, we evaluate the correctness of the computed classifications by comparison with

the gold standard RTM based on the basic trace model with the idf algorithm. Based on this data, we

answer the aforementioned research questions 1 to 5. These five steps are explained in more details in

the following subsections.

Figure 2. Steps of the proposed research framework and developed technologies.

Page 7 of 31

http://mc.manuscriptcentral.com/jsme

Journal of Software: Evolution and Process

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

A. Step 0: Preparing Dynamic Analysis

For our approach to work, we require high quality method call and data dependencies. If the

method call and data dependencies were of poor quality, we would not expect to find any relationship

between them and requirements traces beyond the random chance of correctness discussed earlier.

There could be wrong calling dependencies or missing calling dependencies if the technology were to

identify incorrect calls (=wrong) or failed to identify calls (=missing). Likewise, there could be wrong

data dependencies and missing data dependencies.

Method call and data dependencies can be captured through static and/or dynamic program analysis.

Static analysis does not account for program input and its result must be applicable to all executions of

the program. This situation inevitability forces approximations to be made [29]. Sound static analyses

to capture code dependencies can make correctness guarantees (there are no missing dependencies)

through overapproximation but typically produce a large number of false positives (wrong

dependencies) and consume a significant amount of time or resources if the analysis is performed on

the whole software system. This is not acceptable for us because we need to capture the actual system

behavior to lay a good foundation for our observations. Unsound static analyses make no such

guarantees, but can often quickly produce correct or “close enough to be useful” results. The problem

with unsound static analysis techniques is that they generally err on both sides. If the call and data

dependencies were roughly equally wrong or missing then this might still allow us to investigate

research questions; however, there is no guarantee that this is the case. And it would be hard to argue

on the effects of wrong and missing dependencies in context of requirements traceability. Indeed, we

believe that the static analysis for data dependencies is far less reliable than the static analysis of call

dependencies because data dependencies are much harder to detect and track (e.g., points-to analysis

[15]). If we were to use static analysis techniques, we thus would require manual investigation to

improve the quality of these captured call and data dependencies. We identified 9660 call dependencies

(method calls) and 55382 data dependencies across the five systems (shown in Table 4, Section V) and

manually validating all of them would have been infeasible.

We thus relied on dynamic analysis, which required us to execute the software system and observe

method call dependencies and method data dependencies. Dynamic analysis is guaranteed to neither

cause false call dependencies nor false data dependencies because it observes what actually happens in

the executing system rather than trying to guess it. However, dynamic analysis does not guarantee

complete call and data dependencies because only those code dependencies are observed that were

actually triggered during the execution of the system. The degree of completeness is thus a factor of the

completeness of the test data. We tested all five systems according to use case descriptions of the gold

standard RTMs. But our testing was not limited to the sample requirements nor was it attempted to test

the requirements individually to avoid any bias towards particular requirements. We cannot prevent the

problem of missing call and data dependencies, but we believe that missing dependencies are not so

much a problem for as long as call and data dependencies are missing in a roughly equal ratio. This

appears to be true as long as both call and data dependencies are captured within the same tool when

we were running the same test cases. We will continue to discuss the effect of incomplete testing in the

threats to validity part.

Page 8 of 31

http://mc.manuscriptcentral.com/jsme

Journal of Software: Evolution and Process

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

Figure 3. The approach of capturing method call and data dependencies

There are ample technologies for observing method calls at runtime. For example, in Java any

runtime profiler or debugger could do this job (e.g., TPTP). However, existing technologies for dynamic

analysis do not focus on data sharing between methods. The focus on methods is important here because

traceability is typically provided for code elements (such as classes or methods) and not fields or

variables. Therefore technologies for understanding data sharing among variables are not sufficient for

our purpose.

 Since we were unable to find a tool for capturing both call and data dependencies at the level of

detail described above, we developed one by ourselves (Figure 3). Our tool was built for Java and relies

on the Java JDK. In particular, we are using JVMTI (Java Virtual Machine Tool Interface), which

provides a way to control the execution of a system when it is running in the Java virtual machine (JVM)

while at the same time inspecting the state of that system (i.e., its data). JVMTI can be used to register

for specific, interesting events (such as “method exit” and “field access”) that JVM generates. JVMTI

then helps query and control the system, either in response to events or independent of them. We also

used JNI (Java Native Interface) together with JVMTI to help us locate the actual object in memory

during runtime to establish data dependencies. Our capture tool is offline since we use local databases to

record information about the entry and exit sequence of methods (method-entry/exit-records) and data

accesses triggered by methods (method-using-data records). We then extract method call and data

dependencies based on these generated records. The processes of records generation and method

call/data dependencies extraction are demonstrated in Section V.B (Step 1) and Section V.C (Step 2),

respectively. Furthermore, we extended our tool to capture call and data dependencies in JavaServer

Pages by monitoring the corresponding Java Servlets, which are automatically translated by web servers

(e.g., Apache Tomcat) to support our experiments on J2EE systems such as iTrust. Our technology is

currently restricted to Java. However, we believe that our observations should be generalizable to other

Page 9 of 31

http://mc.manuscriptcentral.com/jsme

Journal of Software: Evolution and Process

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

programming languages because they are based on programming concepts that are similar across

modern programming languages.

B. Step 1: Capturing Method Call Dependencies

For capturing method call dependencies, we were interested in two JVMTI events particularly:

method entry and method exit. These two events allowed us to inspect and record the sequence of

method entries and exits by callback functions registered to these events during runtime. To obtain the

correct calling sequence and avoid data race, we used two functions provided by JVMTI, called

RawMonitorEnter() and RawMonitorExit(), to synchronize our callback functions. Figure 4 shows

eight such method-entry/exit-records that we captured for the Video on Demand system:

Figure 4. Examples of method-entry/exit-records (top) and a derived call tree (bottom)

By traversing these method-entry/exit-records, we first establish call dependencies among methods

that have the same thread ID because each thread executes separately and hence follows its own calling

hierarchy (which we captured in form of call trees). A call tree is a hierarchy where the caller is above in

the hierarchy. The root element is thus where the execution started (e.g., the function main). A separate

call tree was computed for each thread ID. The algorithm is simple and uses a stack structure. If a

method-entry record appears, we push this method into the stack; if a method-exit record appears and

this method is the same as the one at the top of the stack, we pop the stack and establish a call

dependency between the popped method and the method which is right now at the top of the stack. We

used the following algorithm to generate call trees (“stackVar.pop()” means pop the stack and

return the top element; “stackVar.peek()” means return the top element only):

Stack stackVar
foreach record with same thread ID in database {
if (record.type == “entry”)

 stackVar.push(record.method);
 else{
 if(!stackVar.isEmpty())

Method poppedMethod = stackVar.pop();
 if(stackVar.isEmpty() || poppedMethod != record.method){
 display(“Inconsistency” + record);
 }
 else

• ListFrameListener3.actionPerformed() entered, thread ID 19362639.

• ListFrame.buttonControl3_actionPerformed() entered, thread ID 19362639.

• ServerReq.getmovie() entered, thread ID 19362639.

• ServerReq.getmovie() exited, thread ID 19362639.

• Detail.setmovie() entered, thread ID 19362639.

• Detail.setmovie() exited, thread ID 19362639.

• ListFrame.buttonControl3_actionPerformed() exited, thread ID 19362639.

• ListFrameListener3.actionPerformed() exited, thread ID 19362639.

Page 10 of 31

http://mc.manuscriptcentral.com/jsme

Journal of Software: Evolution and Process

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

 establishCallDependency(stackVar.peek(),poppedMethod);
}

The three call dependencies derived from the listed eight method-entry/exit-records are shown in

Figure 4. Each node is labeled with class and method name and represents exactly one method. Method

call dependencies are shown as solid arcs with arrows. We combine the call trees of different threads to

generate the full set of call dependencies.

C. Step 2: Capturing Data Dependencies

To capture method data dependencies, we were interested in three JVMTI events particularly: field

access, field modification, and method exit. In Java, variables can only be created as fields inside a class

or as local variables inside a method. The field access and field modification events tell us when a field

is accessed or modified by a method at runtime. The method exit event (which is the same event we used

in capturing call dependencies) allows us to inspect the full list of created local variables (including

parameters and return values) before the end of a method call.

For our work, it is important to go beyond shared variables because true data dependencies exist if

two methods have access to the same data even if the data are referenced by different variables. Two

methods thus have a data dependency if both methods access or manipulate variables that point to the

same data in memory. With the help of JNI and JVMTI, we can locate actual objects in the Java heap

that are pointed to by the variable’s references (we will discuss how to handle static data and Java

primitive types later). JVMTI also provides a key function for our approach called

GetObjectHashCode() which retrieves a unique 1 identifier of a Java object in memory.

Accordingly, we compute separate so-called method-using-data records for each method. Figure 5

shows four of the sixteen method-using-data records that we captured for the Video on Demand system

(“-init-” refers to the constructor of a Java class):

1 According to the source code of JVMTI, the hash code is first allocated using os.random() by default,

meaning the chance of two hash codes having the same value is 1/232 or 1/264. By additional type checking we are

confident that the hash codes which GetObjectHashCode() returns are unique.

• VODClient.init() accesses a field in the VODClient class named server, which is of type

ServerReq and is uniquely identified by the hash code 13986615

• ListFrame.-init-() declares one of its parameters to be ListFrame.-init-().serverReq,

which is of type ServerReq and is uniquely identified by the hash code 13986615

• ListFrame.-init-() modifies the field NewValue of type ServerReq in the object server of type

ListFrame, which is uniquely identified by the hash code 13986615

• ListFrame.buttonControl3_actionPerformed() accesses the field ListFrame.ser, which is

of type ServerReq and uniquely identified by the hash code 13986615

Page 11 of 31

http://mc.manuscriptcentral.com/jsme

Journal of Software: Evolution and Process

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

Figure 5. Examples of method-using-data records (top) and derived data dependencies (bottom)

By comparing the hash code used in the four listed method-using-data records, we identified two

data dependencies among the three methods: ListFrame.-init-(),

ListFrame.buttonControl3_actionPerformed(), and VODClient.init(). The complete six

data dependencies between buttonControl3_actionPerformed() and the other six methods are

shown in Figure 5. Nodes are labeled with class and method names. Data dependencies are shown as

dashed edges without arrows (see lower part of the figure). These edges are annotated with the number

of data types shared by each two methods. Experiments showed that the number of shared objects

among methods did not convey more information in terms of trace assessments than the number of

shared data types. Our trace classification will utilize this number of shared data types among methods.

D. Step 3: Trace Classification

We merge all method call dependencies and all method data dependencies into a single graph

structure, called the Code Dependency Graph (CDGraph). In this graph, one node represents exactly one

method. We then annotate each node with the gold-standard traceability information as a reference.

Figure 6 shows an excerpt of the CDGraph for the Video on Demand system with traces from the gold

standard RTM annotated to each node (listed at the bottom). For example,

ListFrame.buttonControl3_actionPerformed() is known to contribute to the implementation

of the requirements R0, R2, R10, and R12; it is called by method

ListFrameListener3.actionPerformed(); and it shares data with VODClient.init().

Figure 6 shows that method call dependencies and method data dependencies appear complementary

but also overlapping. For example, there is a method call dependency between

ListFrame.buttonControl3_actionPerformed() and Detail.setmovie() and a method data

dependency between buttonControl3_actionPerformed() and Movie.gettitle(). However,

buttonControl3_actionPerformed() and ServerReq.getmovie()are related by both a method

call dependency and a method data dependency.

Figure 6. Example of a Call-Data Dependency Graph showing one node and its neighbors related

by method call relationships (solid arcs with arrows) and method data relationships (dashed arcs

without arrows). Each node identifies the requirements it traces to (labels Rx).

Page 12 of 31

http://mc.manuscriptcentral.com/jsme

Journal of Software: Evolution and Process

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

We use a system’s annotated CDGraph to find out whether the method call dependencies and the

method data dependencies of any given method node in the graph correlate with requirements-to-code

traces implementing that node. We implemented several algorithms that can automatically classify

requirements traces as trace or no-trace for each node in the captured graph based on its dependencies to

other nodes of the graph and their related requirements. We name this process as “trace classification”.

The reason we implemented several such algorithms was to ensure that the algorithm used does not bias

our observations regarding the research questions. The following subsection introduces the most basic

classifier we implemented for trace classification. We will describe another more advanced classifier

based on this model in the second part of this section.

D.1. Basic Classifier

The basic classifier, which is also an intuitive and simple algorithm, solely counts the neighbors of a

node in the graph (neighbors are nodes that are either reachable by call dependencies or data

dependencies). Some of those neighboring nodes may relate to a certain requirement and there are those

that do not relate to that requirement. The algorithm then classifies requirements traces for the evaluated

node based on the ratio of neighbors that relate vs. do not relate to that requirement. We are using the

following algorithm to classify the traceability between each requirement in the specification of a system

and each executed method in its source code (i.e., each node):

foreach n in graph {
neighbors = countNeighbors(n);
foreach r in requirementsSpecification {
 tracingNeighbors =
 countTracingNeighbors(n, r);

 if (tracingNeighbors/neighbors > 0.5)
 prediction(n,r) = ‘trace’;
 else
 prediction(n,r) = ‘no-trace’;
}

}

We are using a 50% threshold for the basic classifier to decide between a trace and a non-trace. That

means that if more than 50%2 of a node’s neighbors (aka dependent methods) are tracing to a certain

requirement then we consider it very likely that the node itself is also part of the requirements

implementation. We are using the example graph shown in Fig. 6 to demonstrate this classification

process. The figure shows the method buttonControl3_actionPerformed() of class ListFrame

in the center and its neighbors around. In order to compute classifications for this node, we would iterate

through each of the 12 requirements in the VoD specification. For requirement R0, we discover that 86%

of the node’s neighbors (six out of seven) trace to R0 and this value is well above the threshold of 50%.

That means that we would predict a trace to R0 for the evaluated method. This prediction is correct as

the evaluated method is truly related to R0. This is evident in the node for

buttonControl3_actionPerformed() which also lists R0 as one of its requirements. We want to

emphasize that we base our classification on the known traces of the neighboring nodes and not on the

gold standard traces of the node under investigation. Thus, we are assessing whether the traceability of

neighboring nodes (nodes with call or data dependencies) have a correlation to the traceability of the

node itself. Proceeding with this process, we would eventually predict traces to R0, R2, R5, and R12. A

2 We used different thresholds and found that they trade-off precision and recall while the observations shown

in that paper do not differ otherwise.

Page 13 of 31

http://mc.manuscriptcentral.com/jsme

Journal of Software: Evolution and Process

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

comparison with the gold standard traces in Figure 4 shows that a trace to R5 would be classified which

is currently missing in node ListFrame.buttonControl3_actionPerformed(), while the trace to

R10 would be identified as incorrect though it is currently present in the node. We refer to these two

situations as wrong trace classifications and missing trace classifications.

D.2. An Advanced Classifier using the Inverse Data Frequency Algorithm

The results of our previous trace classification performed on

ListFrame.buttonControl3_actionPerformed() are not perfect. We classified it falsely to trace

to R5 and we falsely classified it to not trace to R10. As we discussed in Section V.C, a data dependency

is composed by data types, which are shared by two methods. Are all these data types helpful for

understanding requirements-to-code traceability?

Data Type Occurrence idf Value

1 MPEGDecoder.ServerReq 15 1.7805

2 java.awt.event.ActionEvent 8 2.0536

3 java.awt.list 10 1.9566

4 java.lang.String 127 0.8528

5 MPEGDecoder.Detail 6 2.1785

Table 2. Data types shared in Figure 6

Table 3 shows all five data types shared by all data dependencies in Figure 6 (numbered from 1 to 5).

The data dependencies that connect Movie.-init-(), Movie.gettitle(), and

ServerReq.getmovie() to the center method are using data type 4; the data dependencies that

connect VODClient.init() to the center method are using data type 1; the data dependencies that

connect ListFrameListener3.actionPerformed() to the center method are using data type 2; and

the data dependencies that connect ListFrame.-init-() to the center method are using data type 1, 3,

and 5. The “Occurrence” column in the table shows how often a data type occurred in all data

dependencies of a CDGraph. The maximum possible occurrence is the number of all data dependencies

of a CDGraph (for VoD the number of all data dependencies is 905) meaning that a data type would be

shared by every two pair of methods in the graph. The minimum occurrence is one; meaning only two

methods in the graph share this data type. Not surprisingly, we found that data type

java.lang.String is occuring much more often than other data types. A reasonable guess is that

java.lang.String is a commonly shared data type to pass string information among many

methods in the VoD system. This kind of data types is thus too general for understanding

requirements-to-code traces. We define these data types as “commonly shared data types”. The goal is to

exclude them when making trace classifications. But we want to do so automatically, which is discussed

next.

Next, we introduce a new classifier, which can automatically exclude commonly shared data types

when making trace classifications based on our basic classifier. We call this classifier the Inverse Data

Frequency (idf) classifier. This name is similar to the well-know numerical statistic called Inverse

Document Frequency, which is often used as a weighing factor in information retrieval (for details refer

to [17]). The idea of Inverse Document Frequency is that the more a word occurs in a collection of

documents, which cannot reflect the uniqueness of each document, the less important this word is for

matching relevant documents. This idea is very similar to our “commonly shared data types” if we

suppose our data dependencies to be documents and data types to be words. So we define our

Inverse-Data-Frequency to weigh the importance of each data type for trace classification:

Page 14 of 31

http://mc.manuscriptcentral.com/jsme

Journal of Software: Evolution and Process

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

idf� = log
	

�
 (1)

where N is the total number of data dependencies in the CDGraph and nd is the occurrence of a given

data type in all data dependencies. The calculated idf values for each data type in the VoD example are

shown in Table 3 (for the CDGraph of VoD, the number of N is 905).

With the idf values for each data type in the CDGraph, we now introduce our Inverse Data

Frequency classsifier. The idf value in the algorithm plays two roles. First, we set up a 0.9 threshold

(according to the previous investigations and case study results) meaning if a data type has an idf value

lower than 0.9 then we exclude this data type when making trace classifications. If all data types from

one data dependency are excluded, the neighbor method that is only connected by this data dependency

without any call dependency attached to the target method will be ignored when counting neighbors.

Second, for data types that are not excluded we keep the idf values as extra weights when counting

neighbors (for both trace and no-trace). If a data dependency is composed by multiple data types that are

not excluded by the threshold of the idf value, the extra weight for the neighbor method connected by

this data dependency will be the sum of all idf values. So the algorithm we use for trace classification is

as follows (we still keep the 50% threshold for counting neighbors and their weights):

foreach n in graph {

traceVote = noTraceVote = 0;
foreach r in requirementsSpecification{
foreach neighbor in n.neighborCollection{
 neighbor.idfExtraWeight = 0;

//Remains 0 if only call dependencies exist between two methods
foreach dataDependency between n and neighbor{
dataTypeNum = countDataTypes(dataDependency);
if (dataType.idfValue < 0.9)

 dataTypeNum = dataTypeNum – 1;
 else
 neighbor.idfExtraWeight += idfValue;
}
if (dataTypeNum == 0 && !isConnectedByCallDependency(n,neighbor))

 continue;
if (isTracedTo(neighbor,r))

 traceVote += 1 + neighbor.idfExtraWeight;
else

 noTraceVote += 1 + neighbor.idfExtraWeight;
}
if (traceVote/(traceVote + noTraceVote) > 0.5)
 prediction(n,r) = ‘trace’;
else
 prediction(n,r) = ‘no-trace’;

}
}

If we use our idf algorithm with a 0.9 threshold in Figure 6 to classify traces for

ListFrame.buttonControl3_actionPerformed(), we would reduce the CDGraph to the one

shown in Figure 7. Figure 7 just illustrates how our idf algorithm works. In the figure, two neighbors

Movie.-init-() and Movie.gettitle()are ignored because the data dependencies that connect

them to buttonControl3_actionPerformed() are composed entirely by data types that have idf

values lower than 0.9 (i.e., java.lang.String) and there are no call dependencies that connect them

to the center method (unlike method ServerReq.getmovie()). Now we compute the trace

classifications with the calculated idf values as the extra weights for each neighbor methods. For

requirement R10, we find that three out of five existing neighbor methods trace to R10 and with the

extra weight for each existing data dependency, the value would become:

Page 15 of 31

http://mc.manuscriptcentral.com/jsme

Journal of Software: Evolution and Process

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

�1 � 1.7805� � 1 � �1 � 1.7805 � 1.9566 � 2.1785�

�1 � 1.7805� � 1 � �1 � 1.7805 � 1.9566 � 2.1785� � 1 � �1 � 2.0536�
= 0.7252

and this value is well above the threshold of 50%. Proceeding with this process, we would eventually

predict traces to R0, R2, R10, and R12 and this time we make neither wrong traces classifications nor

missing traces classifications.

Figure 7. Sample of a Call-Data Dependency Graph to illustrate the Inverse Data Frequency

algorithm. The figure shows the pruned graph after the idf algorithm was applied.

E. Step 4: Evaluating the Correctness of Classifications

In this section we discuss how to assess the correctness of trace classifications for each

method-requirement combination in an evaluated system. In order to evaluate the correctness of a

classification, the result is compared with the golden standard requirements traceability matrix. Table 4

shows the four possible combinations of classification and golden standard value. While TP (True

Positive) and TN (True Negative) refer to correctly classified traces and non-traces, a FN (False

Negative) refers to a missing trace and a FP (False Positive) refers to a wrong trace classification. For

each evaluated system, we count how often each of the four validation results occurs. The reason for

splitting classifications of traced and non-traced nodes is that for a typical system the RTM is very

sparse and the number of traces compared to no-traces is very low. The splitting allows understanding

where false classifications are made and to compare our results to related work (see Section III).

Classification Golden

Standard RTM

Validation Result Correctness

Trace
Trace

TP Correct

No-Trace FN Incorrect

Trace
No-Trace

FP Incorrect

No-Trace TN Correct

Table 3. Result types for the validation of trace classification

The overall incorrectness (combining “trace” and “no-trace”) is defined as formula (2) and shows the

percentage of correct classifications in relation to all given classifications. A value of 0% means that

only correct classifications are given and a value of 100% means that only incorrect classifications are

computed.

Page 16 of 31

http://mc.manuscriptcentral.com/jsme

Journal of Software: Evolution and Process

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

Incorrectness = 	
!"#!	

�$"#!	#!"#$	�
 (2)

The recall is defined as formula (3) and shows the percentage of proposed traces (ignoring “no-trace”)

in relation to all classifications on traced nodes. A value of 100% means that trace classifications are

complete (none are missing) as compared to the golden standard RTM.

Recall = 	
$"

�$"#!	�
= 1 − Missing	Trace	Rate (3)

Finally, the precision is defined as formula (4) and shows the percentage of correctly proposed traces

(ignoring “no-trace”) in relation to all classifications on trace nodes. A value of 100% means that trace

classifications are correct (none are wrong) compared to the golden standard RTM.

Precision = 	
$"

�$"#!"�
= 1 − Wrong	Trace	Rate (4)

V. Experimental Setup

In order to answer our research questions (see Section III), we performed three experiments per

each evaluated system. First, we computed classifications on a graph by considering only method call

dependencies (Call Graph). This is the CDGraph minus all data dependencies. Second, we computed

classifications on a graph by considering only method data dependencies (Data Graph). This is the

CDGraph minus all call dependencies. Finally, we computed classifications on a complete CDGraph

that contained both method call and method data dependencies (Call + Data Graph). For experiments

based on a graph with data dependencies, we applied the proposed idf algorithm.

Our evaluation is based on five small to large software systems: VideoOnDemand (VoD), Chess,

GanttProject [31], jHotDraw [32], and iTrust [14]. Table 2 lists basic metrics about the five systems. We

chose these systems because of the availability of requirements specifications and, more significantly,

“gold standard” requirements-to-code traces made available by their original developers or developers

familiar with the code. The five projects are of different size and of different application domains. The

systems cover about 171 KLOC and the gold standard RTMs covered in total 91 requirements with their

respective requirement and use case specifications for our evaluation purposes. Our focus on a subset of

the requirements does not affect the validity of the findings discussed later because each requirement

was evaluated separately. Even though many methods implemented multiple requirements, it is possible

to investigate each requirement separately. As can be seen from Table 2, the requirements were diverse

in size, being implemented in between 0.003-13% of the code (measured by the number of methods).

Video on

Demand
Chess

Gantt

Project[31]

jHotDraw

[32]

iTrust

[14]

Version – 0.1.0 2.0.9 7.2 13.0

Programming language Java Java Java Java Java

KLoC 3.6 7.2 45 72 43

Executed methods 165 317 2741 1755 258

Evaluated requirements 12 7 17 21 34

Average number of methods

implementing a requirement

9-148

(45)

23-288

(173)

78-815

(387)

1-555

(121)

1-33

(12)

Size of the golden RTM 1980 2219 46597 36855 8772

Requirements traces 534 1211 6584 2547 398

Average code coverage per

requirement
0.5–7.5% 1–13% 0.2–1.7% 0.003–1.5% 0.01–0.4%

Method call dependencies 210 439 4830 3848 333

Method data dependencies 905 976 30452 17316 5733

Page 17 of 31

http://mc.manuscriptcentral.com/jsme

Journal of Software: Evolution and Process

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

Table 4. Overview of the five evaluated systems

The availability of a high quality gold standard for requirements traces was essential for this work.

Since the goal is to understand the relationship between code dependencies and requirements

traceability, we used the gold standard for assessing whether the various code dependencies indeed are

beneficial to requirements traceability. The iTrust case study already had available high quality

requirements-to-code traces which we could utilize [14]. For the other four case study systems, we had

to obtain them first. We did so by recruiting 1) the original developers in case of the two larger systems:

GanttProject and jHotDraw and 2) persons who were very familiar with a given system (in case of the

smaller VoD and Chess). Consequently, for all five case study systems we had available high-quality

Requirements-to-Code Trace Matrices (RTMs). The RTMs of four of the systems (not iTrust) were at

the granularity of classes (requirements to class traces). In order to discover the correlation between

requirements traceability and the communications between methods based on calling and data sharing,

we propagate traces from one class to all the methods that belong to the class. This means that if a class

is traced to a requirement according to the RTM, then all the methods inside this class also traced to

that requirement. Meanwhile, we were also able to access a method-level RTM for the iTrust System

which has been widely investigated in recent requirements traceability research. We will revisit

research question 4 in section VI to find out whether different trace granularities affect our approach.

Summarizing all five RTMs, we had available 11274 trace links among 91 requirements, with an

average of 124 traces per requirement. Table 2 provides further details. For example, we see that the

number of methods implementing a given requirement ranged from 1 method (smallest) to 815

methods (largest). Most of the requirements were functional but five of the 91 requirements were

non-functional. Examples of the evaluated requirements are:

• VoD R6: The system should have a one second max response time to start playing a movie.

• Chess R5: User can select and move figure

• GanttProject R04: The user should be allowed to add or remove a task as a subtask to an existing

task.

• jHotDraw R11: The user may group shapes into more complex shapes. Grouped shapes should be

allowed to be ungrouped.

• iTrust UC1: Create and disable patients.

While the requirements were very diverse, Table 2 also reveals that their traces were very unlikely

to be guessed. If we were to take a method and randomly choose its requirements then we would only

be between 0.003–13% likely to correctly guess the requirement the method implements (number of

requirements traces divided by the size of the RTM). For any automation to be useful, it would have to

make significant improvement based on this random chance.

To guarantee the quality of captured code dependencies, we randomly inspected 15% of the

executed methods in all five evaluated systems. We found that all the captured method call and method

data dependencies for those evaluated methods were correct and we had collected enough dependencies

to represent the behavior of each system for understanding requirements-to-code traces in the gold

standard RTMs. The overhead of capturing both call and data dependencies by running test cases for

each case study system is a one-time cost and was reasonable (20 minutes for VoD, 1 hour for Chess,

1.5 hours for jHotDraw, 3 hours for Gantt, and 1.5 hours for iTrust).

Page 18 of 31

http://mc.manuscriptcentral.com/jsme

Journal of Software: Evolution and Process

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

VI. Results and Discussion

By analyzing the five selected software systems, we computed roughly 96,000 trace classifications.

Table 5 shows the results in form of the introduced metrics: incorrectness, recall, and precision

(columns) for all five systems (major rows) and for call and data dependencies separately and call/data

dependencies combined (minor rows repeated for each system). The results shown in the table are used

to answer our research questions (see Section III).

Correct Incorrect Incorrect

ness
Recall Precision

TP TN FN FP

VoD

Call 349 1249 185 197 19.29% 65.36% 63.92%

Data 449 1395 85 51 6.87% 84.08% 89.80%

Call + Data 454 1400 80 46 6.36% 85.02% 90.80%

Chess

Call 1118 950 93 58 6.81% 92.32% 95.07%

Data 959 956 251 53 13.70% 79.26% 94.76%

Call + Data 1144 949 67 59 5.59% 94.47% 95.10%

Gantt

Project

Call 3926 38286 2658 1727 9.41% 59.63% 69.45%

Data 3292 39298 3292 715 8.60% 50.00% 82.16%

Call + Data 4391 38939 2193 1074 7.01% 66.69% 80.35%

jHotDraw

Call 1291 33739 1256 569 4.95% 50.69% 69.41%

Data 1261 34074 1286 234 4.12% 49.51% 84.35%

Call + Data 1606 33994 941 314 3.41% 63.05% 83.65%

iTrust

Call 240 8262 158 112 3.08% 60.30% 68.18%

Data 139 8337 259 37 3.37% 34.92% 78.98%

Call + Data 233 8299 165 75 2.74% 58.54% 75.65%

Table 5. Number of correct/incorrect classifications and aggregated metrics assessing the computed

classifications for the evaluated systems and for the three method dependency combinations (Call,

Data, and Call+Data)

Previous finding: Method call dependencies are relevant for evaluating requirements-to-code

traces.

We found that by evaluating traces through method call dependencies then merely 3.08% (iTrust) to

19.29% (VoD) of the classifications were incorrect. In contrast, a randomly chosen result for a

requirement would be 87-99.997% incorrect (see Table 4) because it would depend on the average code

coverage of the requirement. The computed results are clearly far from random guessing and

consequently the result shows a strong relationship between method call dependencies and

requirements-to-code traces. We conclude that method call dependencies are relevant for evaluating

requirements traces. This observation is consistent with related work (see Section IX).

A. Research Question 1: Are method data dependencies relevant for

assessing requirements-to-code traces?

Looking at Table 5, we found that by purely evaluating method data dependencies 3.37% (iTrust) to

13.70% (Chess) of the classifications were incorrect. This result shows that also a strong relation exists

between method data dependencies and requirements-to-code traces (compared to random guessing). In

result, method data relations are relevant for understanding requirements-to-code traces (RQ1) and

suggests that method data dependencies are a viable alternative to method call dependencies.

Page 19 of 31

http://mc.manuscriptcentral.com/jsme

Journal of Software: Evolution and Process

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

B. Research Question 2: Are method call and method data

dependencies complementary in assessing requirements-to-code

traces?

This is the key question because if method data dependencies are quite similar to method call

dependencies then we would not benefit from capturing both. A benefit would exist only if the two

where complementary to a large degree. In Table 5 we see that by utilizing both types of dependencies

and our advanced classification algorithm only 2.74% (iTrust) to 7.01% (VoD) of the computed

classifications were incorrect. These are the best results across all five systems, suggesting that method

call and method data dependencies are in fact complementary (RQ2). We see a strong benefit for both

precision and recall. Looking at Table 5, we also notice that the recall for Call+Data is almost always

far above the recall for either Call or Data individually (except for iTrust which is nearly the same as

the recall for Call). The same is true for the precision (except for GanttProject, jHotDraw, and iTrust

which are nearly the same as the precision for Data). The average increase of both precision and recall

by considering both call and data dependencies is 19.80% compared to considering call dependencies

only and 13.10% compared to considering data dependencies only. This suggests that the trace

classifications computed for Call+Data leverage from the strengths of both Call and Data individually –

i.e., Call and Data observations are complementary. This fact is also observable through Table 6. The

table shows the number of call dependencies (left column), the number of data dependencies (middle

column), and the overlapping dependencies that are present in the call and the data dependency set

(right column) for the five evaluated systems. The table shows a comparably small number of

overlapping dependencies.

 Call dependencies Data dependencies Overlapping dependencies
VoD 210 905 66

Chess 439 976 121

GanttProject 4830 30452 1120

jHotDraw 3848 17316 981

iTrust 333 5733 65

Table 6. Numbers and overlap of call and data dependencies in the CDGraphs of the five case study

systems

C. Research Question 3: Is the complementary effect of method call

and data dependencies for assessing requirements-to-code traces

affected by trace granularity?

As we discussed in Section V, we had available (gold standard) RTMs with coarser-grained

class-level traces for four of the five evaluated systems (VoD, Chess, GanttProject, and jHotDraw). The

traces for these systems were automatically propagated from classes to their containing methods for our

analyses. Only for the iTrust system we had available a (gold standard) RTM with finer-grained

method-level traces. To assess whether method-level traces lead to better classifications compared to

Page 20 of 31

http://mc.manuscriptcentral.com/jsme

Journal of Software: Evolution and Process

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

class-level traces, we created a class-level RTM for iTrust and performed our assessment with those

trace granularities. Abstracting traces from method-level to class-level is straightforward (the reverse is

not). For example, consider a class C containing two methods: m1 and m2. Method m1 traces to

requirement R1 and method m2 traces to requirement R2. Abstracting traces means that class C traces

to both R1 and R2. Class level traces thus are the union of their methods’ traces.

 Correct Incorrect Incorrec

tness
Recall Precision

TP TN FN FP

iTrust

Class-level

RTM

Call 308 7487 660 317 11.14% 31.82% 49.28%

Data 265 7731 703 73 8.85% 27.38% 78.40%

Call + Data 358 7648 610 156 8.73% 36.98% 69.65%

Method-level

RTM

Call 240 8262 158 112 3.08% 60.30% 68.18%

Data 139 8337 259 37 3.37% 34.92% 78.98%

Call + Data 233 8299 165 75 2.74% 58.54% 75.65%

Table 7. Number of correct/incorrect classifications and aggregated metrics assessing the computed

classifications for the iTrust system and for the three method dependency combinations (Call, Data, and

Call+Data) based on class-level and method-level RTMs

Table 7 shows results for iTrust’s class-level RTM and the original method-level RTM. The table

shows that by using the class-level RTM with combined method call and method data dependencies,

8.73% of the computed classifications were incorrect. In contrast, by using the finer-grained (and more

precise) method-level RTM, the result improved to 2.74% incorrectness, which is the best value

observed across the different evaluation scenarios. However, the observations (i.e., method-level RTMs

always yielded better results than class-level RTMS) of RQ1 are still valid if we consider call and data

dependencies separately. Also the observations of RQ2 remain valid as we also found a complementary

effect of method call and method data dependencies for assessing requirements-to-code traces. This

particular complementary effect is not influenced by trace granularity (RQ3). This finding suggests that

the trace assessment framework is applicable to software systems with RTMs of different trace

granularities. Another finding is that finer trace granularities allow for better assessment results (results

based on a method-level RTM are more correct than results based on a class-level RTM), suggesting

that the assessment can benefit from the effort of building a more fined-grained RTM (though building

a method-level RTM costs more than building a class-level RTM, for details refer to [27]).

D. Research Question 4: Is the complementary effect of method call

and data dependencies affected by trace incorrectness?

Thus far, we used the gold standard RTMs as both the input and the oracle. In practice, traceability

assessment would be performed based on imperfect RTMs as input – RTMs that are both erroneous and

incomplete. An erroneous RTM contains both wrong (wrongly suggested traces) and missing (wrongly

suggested no-traces) traces. An incomplete RTM contains undecided cells where no input was provided

(it is neither trace nor no-trace). It is important to study the effect that imperfect input traceability can

have on the assessment results. Therefore, we wanted to find out whether the complementary effect of

method call and method data dependencies is affected by trace incorrectness (RQ4) or incompleteness

(RQ5). Considering the type of assessment that we perform, a random error is easily identifiable while

a set of coordinated errors could substantially influence the results of the classification based on

neighbor counting. For example, to change a likely trace to an unlikely no-trace, the majority of traces

Page 21 of 31

http://mc.manuscriptcentral.com/jsme

Journal of Software: Evolution and Process

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

from neighbor methods have to change to no-traces under the 50% threshold, which is an unlikely

scenario and vice versa. However, it is not clear whether RTM errors in practice are randomly

distributed or concentrated in certain areas of the RTM.

To obtain realistic RTMs, we conducted an experiment with 85 subjects, which had to identify

requirements-to-code trace for GanttProject and jHotDraw. The subjects were asked to inspect a subset

of the specification and the code for both systems and had to create traces between them. The obtained

traces were compared to the original RTM. By merging multiple subset RTMs created by our subjects,

we could obtain complete RTMs for both systems. This process fits the industrial practice where traces

are often captured by multiple developers. The many combination possibilities allowed us to obtain a

wide spread of RTM qualities.

For the other three systems we used random seeding instead, meaning that we randomly picked

cells in the gold standard RTM and inverted them.

In both cases, random error seeding was measured as a percentage relative to the total number of

traces. For example, if a requirement had 100 traces then 10% errors mean that 10 of these 100 traces

are either missing or wrong. In order to balance the effect from both wrong and missing traces, we

seeded the same number of wrong and missing traces into the gold standard RTM. So in a 10%

erroneous RTM, 5% of the errors are wrong traces and the other 5% are missing traces. We gradually

(5%) increased the level of error seeding and obtained randomly 5 erroneous RTMs at each level.

We assessed the obtained RTMs for all five systems using the advanced classifier with the idf

algorithm. The classification results were compared with the gold standard RTMs. Similar to the

previous experiments, we performed assessments by using only call dependencies, by using only data

dependencies, and by using all dependencies. Figure 7 depicts the Incorrectness in relation to the

percentage of errors introduced by subjects or random error seeding for five evaluated systems.

Page 22 of 31

http://mc.manuscriptcentral.com/jsme

Journal of Software: Evolution and Process

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

Figure 7. Classification incorrectness in relation to the validated erroneous RTMs for the five

evaluated systems and for the three method dependency combinations (Call, Data, and Call + Data)

Across all evaluated systems, we found that the incorrectness of classifications rises linearly with

the amount of seeded errors. At the maximum level of trace errors the incorrectness of assessment

results differs quite significantly across the different systems. The highest incorrectness for Chess was

51.53% while the highest incorrectness for iTrust was merely 5.05%. The reason for this variance lies

in the fact that the sizes of implementations (the ratio of trace vs. no trace cells in RTMs) differ widely

across the five systems. Table 4 shows that there are 1211 traces for Chess in the gold standard RTM

containing 2219 cells in total. Seeding 100% errors to this RTM compares to an incorrectness of 54.57%

of this RTM. In contrast, iTrust’s gold standard RTM contained 398 traces distributed across 8772 cells

in total. So the incorrectness of the erroneous RTM with 100% seeded errors is only 4.54%.

Despite the variance of incorrectness, the most important observation is that classification results of

all five systems based on both call and data dependencies are almost all below those computed based

on call dependencies or data dependencies separately, except for some erroneous RTMs of VoD,

jHotDraw, and iTrust where the percentage of error seeding reached to 100%. We also found that no

matter whether the erroneous RTMs were created by subjects or by random error seeding, the

classification results on these RTMs behave similarly. This demonstrates that the complementary effect

remains unaffected by trace incorrectness (RQ4).

E. Research Question 5: Is the complementary effect of method call

and data dependencies affected by trace incompleteness?

In practice, trace validation can be seen as an ongoing process that must not necessarily start with a

complete RTM but often starts with traceability knowledge that is only partially available. This

subsection investigates whether and how trace incompleteness is affecting the effect of method data

dependencies for trace validation. The incompleteness of a RTM refers to the number of cells that are

neither traced nor explicitly not traced. Such cells could be randomly distributed across the RTM, they

could be aligned in rows when methods have not been traced at all, or they could be aligned in columns

when requirements have not been traced at all.

To study the effect of incompleteness, we selected random seeding that means removing random

cells from a gold standard RTM to create an incomplete RTM. We gradually increased (5%) the level of

incompleteness seeded to gold standard RTMs and obtained at each level of incompleteness five

Page 23 of 31

http://mc.manuscriptcentral.com/jsme

Journal of Software: Evolution and Process

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

randomly generated RTMs for validation.

Similar to the trace classification on erroneous RTMs, we performed the classification first on a call

dependencies only (Call), then on data dependencies only (Data), and finally on call + data dependencies

(Call + Data). Figure 8 depicts incorrectness of classification results in relation to increasing

incompleteness of the validated RTMs.

Figure 8. Classification incorrectness in relation to the incompleteness of validated RTMs for the

five evaluated systems and for the three method dependency combinations (Call, Data, and Call + Data)

Our observation across all evaluated systems is that the incorrectness of classifications is almost

unaffected by incompleteness up to a level of around 75% RTM incompleteness where the incorrectness

significantly increases. That is somewhat surprising as it says that the overall level of correctness is not

affected unless more than 75% of the input RTM is incomplete. This is very beneficial because it implies

that the validation could be used even at the early stages of trace capture and maintenance. We also

found that the incorrectness classifications based on both call + data dependencies remains lower than

Page 24 of 31

http://mc.manuscriptcentral.com/jsme

Journal of Software: Evolution and Process

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

the results based on call and data dependencies separately. That finding implies that the complementary

effect of call and data dependencies is not affected by trace incompleteness (RQ5). This is also

beneficial to trace generation techniques as such techniques can take advantage of both call and data

dependencies for their analyses starting from highly incomplete sets of automatically retrieved traces.

VII. Limitations and Threats to Validity

1) Quality and Completeness of Gold-Standard RTMs

A possible threat to validity of our results is the incompleteness of code dependencies due to missed

call and data dependencies. We did not have available the RTMs for all requirements of the various

systems and hence we restricted our analysis to subsets of these systems. However, we consider this

incompleteness not as a serious threat regarding the analysis of complementary effect of call and data

dependencies , as both should have equally “suffered” from this problem. Regarding our other findings,

missing dependencies could have negatively impacted classification results leading to too pessimistic

observations.

2) Data Records without Unique Identifier

We faced the problem of handling data records without a unique identifier when capturing

method-using-data records, such as static fields and local variables of Java primitive types (e.g., int,

double, boolean). Static fields are easy to identify because a static field is initialized only once when its

owner class is loaded and this field can be accessed directly by the class name and does not need any

object. We use the type of this field, the name of this field, and the name of the class in which the static

field is declared to identify a given static field (including static fields with primitive types). For a given

non-static field with primitive types, we can first locate the object that owns this field via its hash code

value and then identify this field with the type and name of it inside its owner object. Unfortunately,

there is no unique identifier for local variables of primitive type declared inside methods and we could

not capture data dependencies involving them. Here we made an assumption that developers tend to use

more complex data structures (instead of primitive types) to organize meaningful messages that would

be shared by methods. Another possible situation is that developers typically use primitive types as flags

(type boolean) or counters (type int) across methods. However, in this situation these primitive

types are more likely to be fields inside classes and they are captured by our tool. Our experiments have

shown that we did capture enough other data dependencies to demonstrate the strong benefit of

combining call and data dependencies. More data dependencies might have tilted the balance even

stronger in favor of data (affecting research question 3 mostly) but we doubt that it would have changed

the primary message about the complementary nature of call and data dependencies.###

3) Selection of Classification Algorithms

Throughout the research project, we implemented multiple trace classification algorithms. We

discussed two of them in our previous work [16]. The previously proposed algorithms perform similarly

on the evaluated systems except for iTrust where they resulted in a large quantity of miss-classifications.

We analyzed the problem and proposed the idf algorithm to filter out “commonly shared data types”.

The trace classification results for iTrust by using the idf algorithm then lead to the same principal

observations that we discovered for the other four projects. Moreover, the newly proposed idf algorithm

improves trace classification results on all five evaluated systems. Since the general observations across

all algorithms and all projects remain the same, we consider our observations regarding the research

questions not to be biased by the selection of classification algorithms.

Page 25 of 31

http://mc.manuscriptcentral.com/jsme

Journal of Software: Evolution and Process

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

4) Number and Selection of Cases

We used five systems of different domains (shown in Section V) with RTMs of different sizes and

trace granularities. Each cell in a RTM was validated separately and this large number of cells (96423

cells in total) makes our findings statistically representative. To assess precision, recall, and

incorrectness we relied on a gold standard RTM provided by the original developers of the studied

systems. We had no control over the requirements and RTMs we were given. The gold standard RTM

was most likely not perfect, but we evaluated it for obvious inconsistencies and did discover none.

Furthermore, the trace classification results exhibited roughly the same effects on all five evaluated

systems. We made these observations despite the fact that different developers in different domains

developed the evaluated systems. This leaves us to the conclusion that our findings are representative.

5) Artificial Incorrectness Seeding on VoD, Chess, and iTrust

For the experiments that aimed to find out whether the discovered complementary effect of call and

data dependencies is affected by trace incorrectness (RQ4), we generated erroneous RTMs to the gold

standard RTMs by merging subject errors (for Gantt and jHotDraw) and by seeding errors randomly (for

VoD, Chess, and iTrust). We found that classification results of RTMs with randomly seeded errors

behave similar to those RTMs with human-created errors. We consider the use of random seeding for the

three smaller systems as justified.

6) Granularity of Method Data Dependencies

We identify a method data dependency if two methods share the same object in memory. However,

for trace classification we only used the data type of shared objects to represent data dependencies. All

shared objects of the same type are aggregated. Initial experiments showed that a granularity on the data

type level conveyed comparable information as data dependencies on the object level and lead to

considerable less computational effort.

7) Semantics of Method Data Dependencies

Previous work showed that the semantic of a discovered call dependency between two methods in

relation to a requirement can be manifold [13]. For example, if a method A implements a requirement

R1 and method A calls a method B then two possible meanings apply: 1) method B implements a

service required by method A and therefore implements R1 as well; or 2) method B implements another

requirement R2 that is meant to coincide when A occurs. Trace capture approaches that analyze call

dependencies (such as [10] and [12]) handle this ambiguity through majority voting and aggregation.

Similarly, if method A and B share a data type T and method A implements requirement R1, then one of

two meanings applies: 1) method A is communicating data type T with B to implement requirement R1

and therefore method B also implements requirement R1; or 2) method A passes an common message of

type T to method B and therefore method B does not implement requirement R1. Our proposed trace

classification methods also apply majority voting. We proposed the basic trace model to handle the

ambiguities of both call and data dependencies by neighbor counting. However, if a data type is shared

too many times among methods, then this “commonly shared data type” will mislead our basic trace

model by considering too many irrelevant methods as neighbors. The idf algorithm excludes these

“commonly shared data types”.

8) Threshold Determination for the idf Algorithm

We propose the idf algorithm, which excludes data types that have idf values lower than a threshold

when using the basic trace model to make trace classifications. We set this threshold to 0.9 according to

our manual investigation and case study results. We actually tried several ways to determine this

threshold automatically such as excluding data types with the top five lowest idf values or with the

Page 26 of 31

http://mc.manuscriptcentral.com/jsme

Journal of Software: Evolution and Process

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

bottom 5% idf values. These efforts were not helping and 0.9 was the only threshold that can balance the

performance of classification results for all evaluated systems on all three metrics. Since the main focus

of this paper was to find out whether method data dependencies are helpful in understanding

requirements-to-code traceability instead of optimizing the performance of our proposed approach,

seeking a mechanism for optimizing the threshold of the idf algorithm will remain a future effort.

VIII. Related Work

The method data dependencies that our study focused on exist in the memory of an application and

facilitate data sharing among methods. Our work is particularly concerned with dataflow among

methods because we assess traceability links on the method level of source code. Extracting dataflow

from source code is a research hotspot and considerable work has been done in this field. A specific

topic in this field is program slicing. Program slicing techniques [18, 19] aim to obtain a reduced,

executable program from a given program by removing statements so that this generated program

replicates part of the behavior of the initial program. Slicing techniques can provide dataflow

communications among statements and thus have been widely used in the area of software engineering,

for example, for program understanding and impact analysis (e.g., [20]). Points-to analysis [15] is

another popular technique, which aims to identify all pointers or heap references that can point to certain

variables or storage locations of an application. Similarly to points-to analysis, we also capture method

data dependencies based on whether two methods share the same area in memory. Milanova et al. [21]

extended Andersen’s static analysis technology [15] to extract points-to information from Java. All five

systems evaluated for our study are also written in Java. However, we use the hash code of in-memory

objects, which is collected during runtime and represents a unique id for each memory location, to

capture data dependencies among methods. Lienhard et al. [22] analyzed execution traces and extracted

an Object Flow Graph (OFG) in which edges represent objects, and nodes represent code structures

(either classes or groups of classes). For our CDGraph, we also generate data edges via

method-using-data records representing data types shared by two methods. The main difference between

points-to analysis and our tool for capturing data dependencies is that points-to analysis focuses on the

relationship among objects or classes while our work focuses on data dependencies among methods.

Neither slicing nor points-to analysis provide method data dependencies as we analyzed them for this

paper. Therefore, we built a new prototype runtime capture tool to recover both method call and method

data dependencies based on JVMTI events.

Requirements-to-code traceability and the activity of retrieving them, often referred to as feature

location [10], also received considerable attention by the scientific community. Information retrieval

(IR), perhaps to date the most widely applied and studied technology in the traceability community,

identifies traces based on naming similarities between source code and other software artifacts, like

requirements [23-26]. However, an important issue hindering the performance of IR techniques when

applied to the recovery of traceability is the problem of vocabulary mismatch between source and target

artifacts (like requirements and code). This problem is still the focus of ongoing research in the field

with various ideas being pursued. For example, Marcus et al. [24] applied latent semantic indexing (LSI)

to locate domain concepts for a given system and to preclude term combinations that are less frequently

occurring in a given document. Cleland-Huang et al. [25] presented three strategies to enhance the

matching results generated by their IR model based on probabilistic networks. The key idea of those

works is introducing extra information when matching requirements (such as the section name of a given

Page 27 of 31

http://mc.manuscriptcentral.com/jsme

Journal of Software: Evolution and Process

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

requirement) and code elements (such as the package name of a given class or method) and to exclude

keywords promoting wrongly retrieved traces. Gethers et al. [26] proposed an IR-based approach that

integrates orthogonal information generated by relational topic modeling (RTM), which defines a

comprehensive method for modeling interconnected networks of documents in order to achieve a

complementary effect for improving traceability recovery. This approach has similarities to our work

because we use a graph of methods that are connected by call and data dependencies and we also found

a complementary effect by considering two kinds of method dependencies for computing our trace

assessments. However, all discussed approaches require rich requirements descriptions and

well-documented code. It is important to note that these approaches did not consider the role of code

dependencies, let alone demonstrate a benefit in combining call dependencies and data dependencies to

better understand requirements-to-code traceability. .

There is previous work that incorporates the analysis of calling relationships between methods to get

better understanding of code and their traceability to requirements. Biggerstaff et al. [8] built a prototype

to help people assign human concepts back to the code including an editable call graph. Zhao et al. [10]

proposed an approach (SNIAFL) using a call graph with additional branch information to refine traces

achieved by information retrieval. Hill et al. [11] used lexical analysis and call graph exploration in a

tool called Dora to perform software maintenance tasks. Ghabi and Egyed [12,13] propose an approach

to maintaining requirements-to-code traces by validating them in context of code calling relationships.

The authors argue that requirements are typically implemented in methods that directly or indirectly

communicate; the concept is called requirements regions.

Calling relationships are not the only means of method communication. McMillan et al. [7] created

an approach called Exemplar to find highly relevant software projects from large archives of

applications based on natural-language query by considering the description of applications, the API

calls used in the applications, and the data flow among these API calls. They studied data flow in a

similar context of requirements-to-code traceability as our study did. However, their data flows are

approximated and exhibit false positives and false negatives. The authors conclude that data flows do not

appear to benefit requirements-to-code traceability. This finding is contradictory to our observations. A

possible explanation is a potential high number of false and missing data flow dependencies in their

study (which is mentioned by the authors in the paper). Furthermore, the ambiguity of method data

dependencies (see Section VII, part 7) may have also prevented them from finding all data flows, since

they treated all data types equally.

All discussed work on code dependencies [7, 8, 10-13] focused either on control flow or on data flow

to improve the quality of the trace recovery process based on information retrieval. Yet, our focus was

not on finding a well performing algorithm and on automatically identifying or validating traces. Instead

we were focusing on whether call and data dependencies are useful, separately and combined, in

assessing requirements-to-code traceability.

In earlier work [13], we focused only on calling dependencies between methods in order to identify

regions in the source code that implement a given requirement. We found that requirements in fact were

implemented in connected areas of the source code rather than randomly distributed. In a follow-on

publication [4] we introduced a surroundedness property to requirements regions. There, we found that a

given method typically shares the same traces to requirements as the methods it calls or are called by it

(i.e., its neighbor methods). In this work we built upon those observations and investigated method data

dependencies in order to augment the meaning of a “neighbor method” – i.e., a method that may be

related by call or data dependencies. We showed that these two kinds of method dependencies are

Page 28 of 31

http://mc.manuscriptcentral.com/jsme

Journal of Software: Evolution and Process

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

complementary to each other and together they help to better understand where a requirement is

implemented in the source code.

IX. Conclusions

In this paper, we investigated the question whether method data dependencies are related to

requirements in a manner that is similar to method call dependencies. For example, if two methods do

not call one another, but do have access to the same data then is this information relevant? We

formulated five research questions and validated them on five software systems, covering about 171

KLOC. Our findings are that method data dependencies are equally related to requirements as method

call dependencies. But, most interestingly, our analyses show that method data dependencies

complement method call dependencies. That means by evaluating both we reached the best

understanding of how a set of methods is related to a requirement and the improvements were

considerable. Furthermore, we demonstrated that the complementary effect is not affected by trace

incompleteness and incorrectness. Our findings benefit requirements traceability practice and research in

several ways. It could be used to improve trace capture, trace maintenance, and trace validation (as was

demonstrated in this paper). Furthermore, other research directions such as program understanding can

benefit from the combined knowledge of call and data dependencies. This work thus benefits the

research community to encourage further research in combining call and data dependencies. The tool for

capturing data dependencies is available at http://www.sea.jku.at/tools.

Acknowledgements

We would like to thank all participants of our user studies. We are funded by the 973 Program of

China grant 2015CB352202 and the National Natural Science Foundation of China (NSFC) grants:

91318301, 61321491, 61100037, 61100038, 61472177; by the German Ministry of Education and

Research (BMBF) grants: 16V0116, 01IS14026A; by the U.S. National Science Foundation (NSF)

CNS Award: 1126747 and the Oversea Scholar Fund of State Key Laboratory for Novel Software

Technology at Nanjing University; and the Austrian Science fund (FWF) grant: P 23115-N23.

References

[1] P. Mäder and A. Egyed, "Assessing the effect of requirements traceability for software

maintenance," 2012 28th IEEE International Conference on Software Maintenance (ICSM), pp.

171-180, 2012

[2] Dit, Revelle, M. Gethers, and D. Poshyvanyk, “Feature Location in Source Code: A Taxonomy

and Survey”, Journal of Software Maintenance and Evolution: Research and Practice (JSME),

2011

[3] M. Marin, A. V. Deursen, and L. Moonen. Identifying crosscutting concerns using Fan-In analysis.

ACM Transactions on Software Engineering and Methodology (TOSEM), 17(1), pp. 3:1-3:37,

2007

[4] A. Ghabi and A. Egyed. "Observations on the connectedness between requirements-to-code traces

and calling relationships for trace validation," in 26th International Conference on Automated

Page 29 of 31

http://mc.manuscriptcentral.com/jsme

Journal of Software: Evolution and Process

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

Software Engineering (ASE), Lawrence, Kansas, 2011, pp.416-419.

[5] C. McMillan, D. Poshyvanyk, and M. Revelle, "Combining Textual and Structural Analysis of

Software Artifacts for Traceability Link Recovery," in ICSE Workshop on Traceability in

Emerging Forms of Software Engineering (TEFSE), Vancouver, Canada, 2009, pp. 41-48.

[6] A. V. Aho, Marc Eaddy, Giuliano Antoniol, Yann-Gaël Guéhéneuc, "CERBERUS: Tracing

Requirements to Source Code Using Information Retrieval, Dynamic Analysis, and Program

Analysis," in 16th IEEE International Conference on Program Comprehension (ICPC),

Amsterdam, The Netherlands, 2008, pp. 53-62.

[7] C. McMillan, M. Grechanik, D. Poshyvanyk, C. Fu, Q. Xie, "Exemplar: A Source Code Search

Engine For Finding Highly Relevant Applications," IEEE Transactions on Software Engineering

(TSE), 99, 2011

[8] T. J. Biggerstaff, B. G. Mitbander, and D. Webster, "The concept assignment problem in program

understanding," in International Conference on Software Engineering (ICSE 1993), Baltimore,

Maryland, USA, pp. 482–498, 1993.

[9] D. Kim and J. Kim, "Design and implementation of a Java-based MPEG-1 video decoder", IEEE

Transactions on Consumer Electronics, 45(4), pp. 1176-1182, 1999.

[10] W. Zhao, L. Zhang, Y. Liu, J. Sun, and F. Yang, "SNIAFL: Towards a Static Noninteractive

Approach to Feature Location," ACM Transactions on Software Engineering and Methodology

(TOSEM), 15(2), pp. 195-226, 2006.

[11] E. Hill, L. Pollock, and K. Vijay-Shanker, "Exploring the Neighborhood with Dora to Expedite

Software Maintenance", in the 22th IEEE/ACM international conference on Automated software

engineering (ASE), Atlanta, Georgia, 2007, pp. 14-23.

[12] A. Ghabi and A. Egyed, “Code patterns for automatically validating requirements-to-code traces”,

in the 27th IEEE/ACM International Conference on Automated Software Engineering (ASE), New

York, NY, USA, 2012, pp. 200-209.

[13] B. Burgstaller and A. Egyed, “Understanding where requirements are implemented”, in 26th IEEE

International Conference on Software Maintenance (ICSM), Timișoara, Romania, 2010, pp. 1-5.

[14] iTrust System: http://agile.csc.ncsu.edu/iTrust/wiki/doku.php?id=requirements

[15] L. O. Andersen, “Program Analysis and Specialization for the C Programming Language”. PhD

thesis, DIKU, University of Copenhagen, 1994.

[16] H. Kuang, P. Mäder, H. Hu, A. Ghabi, L. Huang, J. Lv, and A. Egyed, "Do data dependencies in

source code complement call dependencies for understanding requirements traceability?", in 28th

IEEE International Conference on Software Maintenance (ICSM), 2012, pp.181-190.

[17] R. Baeza-Yates and B. Ribeiro-Neto, “Modern information retrieval”. New York: ACM press,

1999.

[18] M. Weiser. “Program slicing”. IEEE Transactions on Software Engineering, 10(4):352-357, July

1984.

[19] B. Korel and J. Laski, “Dynamic slicing of computer programs”. Journal of Systems and Software,

1990, 13(3): 187-195.

[20] P. Tonella, “Using a concept lattice of decomposition slices for program understanding and impact

analysis”. IEEE Transactions on Software Engineering, 2003, 29(6): 495-509.

[21] A. Milanova, A. Rountev, and B. G. Ryder. “Parameterized Object Sensitivity for Points-To

Analysis for Java”. ACM Transactions on Software Engineering and Methodology, 14(1), pp. 1-41,

2005.

Page 30 of 31

http://mc.manuscriptcentral.com/jsme

Journal of Software: Evolution and Process

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

[22] A. Lienhard, S. Ducasse, and T. Gîrba. “Taking an object-centric view on dynamic information

with object flow analysis”. Journal of Computer Languages, Systems and Structures (COMLAN),

35(1), pp.63-79, 2009.

[23] G. Antoniol, G. Canfora, G. Casazza, A. De Lucia, and E. Merlo, "Recovering Traceability Links

between Code and Documentation", IEEE Transactions on Software Engineering(TSE), 28(10),

pp. 970-983, 2002.

[24] A. Marcus and J I. Maletic, “Recovering documentation-to-source-code traceability links using

latent semantic indexing”, in the 25th IEEE International Conference on Software Engineering

(ICSE), 2003, pp. 125-135.

[25] J. Cleland-Huang, R. Settimi, C. Duan and X. Zou, “Utilizing supporting evidence to improve

dynamic requirements traceability”, in the 13th IEEE International Conference on Requirements

Engineering (RE), 2005, pp.135-144.

[26] M. Gethers, R. Oliveto, D. Poshyvanyk, and A. De Lucia, “On integrating orthogonal information

retrieval methods to improve traceability recovery”, in the 27th IEEE International Conference on

Software Maintenance (ICSM), 2011, pp. 133-142.

[27] A. Egyed, P. Grünbacher, M. Heindl, et al. “Value-based requirements traceability: Lessons

learned”, in Design Requirements Engineering: A Ten-Year Perspective. Springer Berlin

Heidelberg, 2009: 240-257.

[28] W. Kong, J. Hayes, A. Dekhtyar, and J. Holden. “How do we trace requirements? an initial study

of analyst behavior in trace validation tasks.” In Fourth International Workshop on Cooperative

and Human Aspects of Software Engineering, May 2011.

[29] D. Binkley. “Source Code Analysis: A Road Map”. In Future of Software Engineering (FOSE '07),

2007, pp. 104-119.

[30] CoEST: Center of excellence for software traceability, http://www.CoEST.org

[31] GanttProject: http://www.ganttproject.biz

[32] jHotDraw: http://jhotdraw.org

Page 31 of 31

http://mc.manuscriptcentral.com/jsme

Journal of Software: Evolution and Process

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

